Copied to
clipboard

G = C22:D20order 160 = 25·5

The semidirect product of C22 and D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D10:4D4, C22:2D20, C23.15D10, C5:1C22wrC2, (C2xC10):1D4, (C2xC4):1D10, C2.7(D4xD5), (C2xD20):2C2, C22:C4:2D5, C2.7(C2xD20), C10.5(C2xD4), (C2xC20):1C22, (C23xD5):1C2, D10:C4:4C2, (C2xC10).23C23, (C2xDic5):1C22, (C22xD5):1C22, C22.41(C22xD5), (C22xC10).12C22, (C2xC5:D4):1C2, (C5xC22:C4):3C2, SmallGroup(160,103)

Series: Derived Chief Lower central Upper central

C1C2xC10 — C22:D20
C1C5C10C2xC10C22xD5C23xD5 — C22:D20
C5C2xC10 — C22:D20
C1C22C22:C4

Generators and relations for C22:D20
 G = < a,b,c,d | a2=b2=c20=d2=1, cac-1=dad=ab=ba, bc=cb, bd=db, dcd=c-1 >

Subgroups: 544 in 130 conjugacy classes, 37 normal (15 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2xC4, C2xC4, D4, C23, C23, D5, C10, C10, C10, C22:C4, C22:C4, C2xD4, C24, Dic5, C20, D10, D10, C2xC10, C2xC10, C2xC10, C22wrC2, D20, C2xDic5, C5:D4, C2xC20, C22xD5, C22xD5, C22xD5, C22xC10, D10:C4, C5xC22:C4, C2xD20, C2xC5:D4, C23xD5, C22:D20
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, D10, C22wrC2, D20, C22xD5, C2xD20, D4xD5, C22:D20

Smallest permutation representation of C22:D20
On 40 points
Generators in S40
(2 36)(4 38)(6 40)(8 22)(10 24)(12 26)(14 28)(16 30)(18 32)(20 34)
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 34)(2 33)(3 32)(4 31)(5 30)(6 29)(7 28)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 21)(15 40)(16 39)(17 38)(18 37)(19 36)(20 35)

G:=sub<Sym(40)| (2,36)(4,38)(6,40)(8,22)(10,24)(12,26)(14,28)(16,30)(18,32)(20,34), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,21)(15,40)(16,39)(17,38)(18,37)(19,36)(20,35)>;

G:=Group( (2,36)(4,38)(6,40)(8,22)(10,24)(12,26)(14,28)(16,30)(18,32)(20,34), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,21)(15,40)(16,39)(17,38)(18,37)(19,36)(20,35) );

G=PermutationGroup([[(2,36),(4,38),(6,40),(8,22),(10,24),(12,26),(14,28),(16,30),(18,32),(20,34)], [(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,34),(2,33),(3,32),(4,31),(5,30),(6,29),(7,28),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,21),(15,40),(16,39),(17,38),(18,37),(19,36),(20,35)]])

C22:D20 is a maximal subgroup of
C5:C2wrC4  C23:D20  C24.27D10  C23:3D20  C42:8D10  C42:9D10  C42:10D10  C42:12D10  D4xD20  D4:5D20  C42:17D10  D5xC22wrC2  C24:4D10  C24.34D10  C10.372+ 1+4  C10.382+ 1+4  D20:19D4  C10.482+ 1+4  C4:C4:26D10  D20:21D4  C10.532+ 1+4  C10.562+ 1+4  C10.1202+ 1+4  C10.1212+ 1+4  C4:C4:28D10  C10.612+ 1+4  C10.682+ 1+4  C42:18D10  D20:10D4  C42:20D10  C42:22D10  C42:23D10  C42:24D10  C42:25D10  D6:4D20  D30:5D4  (C2xC6):8D20  D30:18D4  D30:16D4  A4:D20
C22:D20 is a maximal quotient of
(C2xDic5):Q8  (C2xC4):9D20  D10:3(C4:C4)  (C2xC20):5D4  (C2xDic5):3D4  (C2xC4).20D20  D20.31D4  D20:13D4  D20.32D4  D20:14D4  Dic10:14D4  C22:Dic20  C23:D20  C23.5D20  D20.1D4  D20:1D4  D20.4D4  D20.5D4  D4:D20  D20.8D4  D4:3D20  D4.D20  Q8:2D20  D10:4Q16  Q8.D20  D20:4D4  D4:4D20  M4(2):D10  D4.9D20  D4.10D20  C24.47D10  C24.48D10  C23.45D20  C23:2D20  C24.16D10  D6:4D20  D30:5D4  (C2xC6):8D20  D30:18D4  D30:16D4

34 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C5A5B10A···10F10G10H10I10J20A···20H
order122222222224445510···101010101020···20
size11112210101010204420222···244444···4

34 irreducible representations

dim1111112222224
type+++++++++++++
imageC1C2C2C2C2C2D4D4D5D10D10D20D4xD5
kernelC22:D20D10:C4C5xC22:C4C2xD20C2xC5:D4C23xD5D10C2xC10C22:C4C2xC4C23C22C2
# reps1212114224284

Matrix representation of C22:D20 in GL4(F41) generated by

1000
0100
0010
002140
,
1000
0100
00400
00040
,
91100
301400
00137
00040
,
323000
11900
00404
0001
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,1,21,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[9,30,0,0,11,14,0,0,0,0,1,0,0,0,37,40],[32,11,0,0,30,9,0,0,0,0,40,0,0,0,4,1] >;

C22:D20 in GAP, Magma, Sage, TeX

C_2^2\rtimes D_{20}
% in TeX

G:=Group("C2^2:D20");
// GroupNames label

G:=SmallGroup(160,103);
// by ID

G=gap.SmallGroup(160,103);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,218,188,50,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^20=d^2=1,c*a*c^-1=d*a*d=a*b=b*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<